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ABSTRACT

Single-cell ATAC-seq (scATAC-seq) has proven to be
a state-of-art approach to investigating gene regula-
tion at the single-cell level. However, existing meth-
ods cannot precisely uncover cell-type-specific bind-
ing of transcription regulators (TRs) and construct
gene regulation networks (GRNs) in single-cell. ChIP-
seq has been widely used to profile TR binding sites
in the past decades. Here, we developed SCRIP,
an integrative method to infer single-cell TR activ-
ity and targets based on the integration of scATAC-
seq and a large-scale TR ChIP-seq reference. Our
method showed improved performance in evaluating
TR binding activity compared to the existing motif-
based methods and reached a higher consistency
with matched TR expressions. Besides, our method
enables identifying TR target genes as well as build-
ing GRNs at the single-cell resolution based on a
regulatory potential model. We demonstrate SCRIP’s
utility in accurate cell-type clustering, lineage trac-
ing, and inferring cell-type-specific GRNs in multi-
ple biological systems. SCRIP is freely available at
https://github.com/wanglabtongji/SCRIP.

INTRODUCTION

Gene regulation is the basis of many biological processes,
including development, differentiation, and disease occur-
rence and progression. Recently, many single-cell technolo-
gies have been developed to investigate gene regulation
mechanisms from diverse genomic aspects, such as tran-
scriptomes (1), epigenomes (2) or 3D structures (3). Among
them, the single-cell sequencing assay for transposase-
accessible chromatin (scATAC-seq) has enabled the profil-
ing of the genome-wide chromatin accessibility landscapes
in single cells (4). The most powerful application of the
scATAC-seq data is to understand how specific transcrip-

tion regulators (TR), including transcription factors (TF)
and chromatin regulators (CR), bind to the genome and
regulate their target genes. Constructing the gene regula-
tory networks (GRNs) is crucial for understanding the roles
of different TRs in regulating development trajectories and
disease traits.

Although scATAC-seq has been widely used to tackle
gene regulation and their association with phenotypes, sev-
eral questions remain unsolved. First, the chromatin ac-
cessibility captured by scATAC-seq only reflects the over-
all regulatory potential and cannot identify the binding of
exact TRs. Existing methods like chromVAR (5), scFAN
(6) and SCENIC (7) integrate sequence features like mo-
tifs to evaluate TF activity in each cell. However, motif-
based methods cannot discriminate factors of the same TF
family that have similar motifs, and also failed to evaluate
factors with indirect DNA binding such as CRs. Second,
the scATAC-seq data is very sparse and noisy as only two
strands of DNA can be captured within a cell. Methods like
Signac (8), EpiScanpy (9), MAESTRO (10) and SCALE
(11) enhanced the signals by using different latent features,
however, the algorithm-defined features were mostly ana-
lyzed at the cell type level and cannot be directly linked to
the single-cell TR activity. Last but most important, none of
these methods can identify the TR targets in each cell, and
constructing the GRNs at the single-cell level is still not fea-
sible with scATAC-seq data alone. Therefore, new methods
with the potential to address TR binding enrichment and
identify its associated target genes at the single-cell level are
highly needed for scATAC-seq data.

Chromatin Immunoprecipitation Sequencing (ChIP-seq)
(12,13) is a direct way to uncover TRs binding in the genome
and determine their target genes at the bulk cell level. Com-
pared to motifs, ChIP-seq is more accurate in defining cell-
type-specific TR binding sites and investigating the genomic
distribution for many non-DNA-binding CRs. In the past
decades, numerous TR ChIP-seq data have been generated
for different cell lines, tissues, and species (14–16). Several
projects, such as Cistrome DB (16), ENCODE (15) and
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Epigenome Roadmap (17) have curated a large collection of
high-quality TR ChIP-seq data. Integrating the large-scale
ChIP-seq datasets with the motif information will definitely
improve the prediction of TR enrichment in the scATAC-
seq data. However, several issues need to be addressed be-
fore integration. First, the large-scale ChIP-seq reference
should be uniformly processed with standard quality con-
trol metrics to remove the potential low-quality data. Be-
sides, while the antibody-affinity and the signal-to-noise ra-
tio might be diverse for different TRs, the enrichment based
on TR ChIP-seq peaks should be carefully adjusted and
normalized. Finally, an efficient interval searching algo-
rithm is needed for identifying enriched TRs from a large-
scale genome-wide TR reference (18).

The major obstacle to investigating single-cell GRNs
is the lack of single-cell ChIP-seq data. While several re-
cently developed techniques such as scCUT&RUN (19), sc-
CUT&Tag (20) and scCUT&Tag-pro (21) could success-
fully generate ChIP-seq profiles at the single-cell level, how-
ever, most of the data were generated for high abundant hi-
stone modifications (HMs) rather than TRs. Although sev-
eral attempts have been performed on specific TRs (22),
they are highly dependent on the quality of the TR antibod-
ies and usually have extremely fuzzy signals at the single-cell
level. Regulatory potential (RP) models have been widely
used to identify TR targets for bulk ChIP-seq samples (23–
25). The integration of TR ChIP-seq and scATAC-seq data
has the potential for evaluating the single-cell TR binding
site using the RP model, which could be based on the im-
puted TR ChIP-seq peaks at the single-cell level.

Here, we present a computational method SCRIP
(Single-Cell gene Regulation network Inference using
ChIP-seq and motif), which integrates a large-scale TR
and motif reference for evaluating TR activity as well as
constructing single-cell GRNs based on scATAC-seq data.
SCRIP includes a high-quality TR reference covering 1,252
human TRs and 997 mouse TRs. Based on this large-scale
reference, SCRIP showed superior performance in evaluat-
ing single-cell TR activity, performing TR-based clustering,
and lineage tracing analyses. In addition, SCRIP could ac-
curately reconstruct the single-cell GRNs based on imputed
ChIP-seq peaks at the single-cell level. We demonstrated the
usability of SCRIP on multiple biological systems including
peripheral blood mononuclear cell (PBMC), hematopoietic
stem cell (HSC) differentiation, human organ development,
and basal cell carcinomas (BCC).

MATERIALS AND METHODS

Data collection and generation of SCRIP index

We downloaded the uniformly processed ChIP-seq datasets
from the Cistrome Data Browser (16,26,27) through the
‘batch download’ function. In total, we obtained bed files of
11 348 human and 9060 mouse TR ChIP-seq datasets, and
11 079 human and 10 944 mouse HM ChIP-seq datasets.
Since the auto-parsed metadata included mistakes, we sys-
tematically curated the annotation of factors, cell types, and
tissues. To ensure the quality of the datasets, we used the fol-
lowing criteria to filter the TR datasets: the raw sequence
median quality score was >25, the percent of uniquely
mapped reads was >50%, PBC (PCR bottleneck coefficient)

was >0.8, the number of fold 10 peaks was >100, FRiP
(Fraction of Reads in Peaks) was >0.01 and the number of
top 5000 peaks overlapping with union DHS is >70%. To
acquire the high confidence peaks, we only kept the 5-fold
enrichment peaks in each peak set. Then, we removed the
datasets with <1000 peaks. After filtering, we obtained 2314
human and 1920 mouse TR ChIP-seq datasets, covering 671
and 440 TRs respectively (Supplementary Figure S1). We
also filtered histone modification datasets with the same cri-
teria as above. According to previous reports, active histone
modifications such as H3K4me1/2/3 or H3K27ac tends to
be presented in the open chromatin region, while repressive
histone modifications such as H3K27me3 or H3K9me3 are
enriched at the heterochromatin region and have very few
overlaps with the scATAC-seq peaks (28–30). Thus, we only
retained the histone modifications with active functions,
including H3K4me1/2/3, H3K9ac and H3K27ac. We ob-
tained 1678 human and 1013 mouse HM ChIP-seq datasets
covering five HMs (Supplementary Figure S2).

To improve the coverage of transcription factors, we
downloaded the motif information, including 7704 human
and 7000 mouse TF PWMs (position weight matrix), from
the cis-BP database (31). We combined PWMs from the
same TF and converted the format to the HOMER (32)
format. Then we scanned the motifs on the hg38 or mm10
genome with the HOMER and obtained the genome inter-
vals where motifs appeared. We overlapped the scanning in-
tervals with the ENCODE ccRE (candidate cis-regulatory
elements) (33) list and Cistrome union DHS (DNase-I hy-
persensitive sites) list and removed intervals with the inter-
section of the blacklist. To make the motif sites comparable
to the ChIP-seq datasets, we extended the length of each
scanned motif site to 340 bp, which is the average length
of ChIP-seq peaks. For those motifs that have much more
binding sites than others, we only kept the top 25k bind-
ing sites, which were the average of filtered peaks in ChIP-
seq, by filtering out the low confidence motif sites using P-
values. In total, we obtained 916 human and 816 mouse
motif-scanned pseudo peaks (Supplementary Figure S1e, f).

Next, we combined the ChIP-seq peak sets and motif-
scanned pseudo peak sets as reference datasets to build the
search index. To calculate the similarity between reference
datasets and the scATAC-seq datasets, we introduced GIG-
GLE (18), a fast genomics search engine, into SCRIP. We
sorted the bed files, compressed them into gz format, and
built the index with GIGGLE. In addition, we also included
the peaks number, metadata of the datasets, and original
bed files in the index. The reference processing codes are
provided in the Code availability part. Overall, the human
TR index covers 1252 TRs and the mouse covered 997 TRs
(Supplementary Figure S1e, f).

TR activity score calculation

Normalization for removing biases. The SCRIP takes the
scATAC-seq peak by count matrix or bin count matrix as
input. For the sake of getting the comparable TR activity
of each reference dataset in each cell, SCRIP first calcu-
lates the number of peak overlaps between each cell and
the ChIP-seq peaks set or motif-scanned intervals set by
GIGGLE. SCRIP records the number of overlap peaks to

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac819/6717821 by Tongji U

niversity user on 27 Septem
ber 2022



Nucleic Acids Research, 2022 3

build the matrix M, where the column is cell i and the row is
dataset j, and the content is the number of overlapped peaks.
The definition of peaks overlap is the same as the bedtools
(34) and GIGGLE definition, for which a single bp overlap
between TR ChIP-seq peaks/motif sites and the scATAC-
seq peaks will be counted as one overlap. To remove the bias
from the peak number of the datasets and the total length
of single-cell peaks, SCRIP normalizes the matrix by:

N = D × Q

M′
i, j = Mi, j

Ni, j

where D is a j × 1 matrix that records the number of peaks
of each TR ChIP-seq dataset or motif sites, and Q is a 1 ×
i matrix that records the number of base-pair in each cell
per 100 million. Then N is a normalization matrix that is
the matrix product of D and Q, and the M′ matrix is the
normalized peak overlap matrix, which scores the relative
enrichment of TRs in different cells. M’ is further normal-
ized by the average score of each TR dataset to scale the
enrichment for different TRs:

M
′′
j = M′

j − mean
(
M′

j

)

Deduplication for redundant TR datasets. As M′′ still con-
tains duplicate ChIP-seq datasets or motifs for the same
TR, we remove the duplicate datasets and only keep the col-
umn with the largest score for the same TR k:

Yi,k = argmax
{

M
′′
i, j | j ∈ k

}

where the Yi,k is the TR enrichment score matrix. In this
step, the best-matched dataset of each cell is determined in-
dependently according to the largest score within each cell.
Here, we set this maximum strategy as default in SCRIP due
to its superior performance (Supplementary Figure S3), but
also provide an average strategy option, which uses the aver-
age of all same TR datasets to represent the TR enrichment
score.

Scaling the TR enrichment scores. Next, to stabilize the
TR enrichment score and compress the outliers, we intro-
duce the logistic sigmoid function to each TR. The z-score
is a step of the sigmoid function, which will shift the data
range around 0 for effective logistic sigmoid transforma-
tion:

zi,k = Yi,k − mean (Yk)
std (Yk)

Y = 1
1 + e−z

Finally, SCRIP applies z-score normalization to each cell
to ensure that the TR activity scores after sigmoid normal-
ization has a similar dynamic range and achieve better clus-
tering performance:

Yi,k = Yi,k − mean (Yi )
std (Yi )

To better understand the TR enrichment score calcula-
tion and normalization, the distribution changes along with
score calculation and normalization were shown in Supple-
mentary Figure S4.

TR targets modeling. To acquire scaled and dependable
targets of a TR, SCRIP first imputes the potential bind-
ing sites of each TR in each cell. For a specific TR, the
best match ChIP-seq dataset of each cell was determined in
the TR activity score calculation step. SCRIP then imputes
the potential TR binding sites by overlapping the ChIP-seq
peak sets with scATAC-seq peaks or intervals of each cell.
Since some TR ChIP-seq datasets do not have a sufficient
number of peaks and ChIP-seq peak sets are performed on
bulk tissue, which may include the peaks from other cell-
type, SCRIP further provides a function that uses all the
best match TR peak sets of this data found to include other
potential binding sites.

With the TR potential binding sites, we can measure the
effect on other genes of this TR, or determine the target of
this TR, with the RP model. The RP score of a gene is its
likelihood of being regulated by a TR and has been used
in several previous studies (10,23–25). In general, the RP
models could be classified as signal RP model and peak RP
model, which are based on scaled signals or binarized peaks,
separately. Compared to the signal RP model, the peak RP
model used in Cistrome-GO (25) and MAESTRO (10) is
more compatible with the binarized signal of scATAC-seq
and thus is introduced here. In SCRIP, the formula of the
RP score calculation is shown below:

Sg =
n∑

i=1

2− di
d0

where the d0 is the half-decay distance or regulatory range,
and it can be changed by users. The n denotes the num-
ber of binding sites near the TSS of gene g. To save the
computation time, SCRIP only takes genes within 15d0 into
account as the score will be less than 0.0005 if a peak is
over 15d0. The di is the distance between the ith peak’s cen-
ter and TSS. This is defined as the simple RP model in
SCRIP. The enhanced RP model takes the exon informa-
tion and nearby genes into account. If a peak is located at
the exon’s region of a gene, the score of this peak is set to
1 and further normalized by the total exon length of the
gene. If a peak locates in the promoter or exon regions of
any nearby genes, then the score of this peak is set to 0.
Also, for specific TRs, we added a ‘auto’ mode to automat-
ically determine the d0 by the percentage of the TR peaks
on promoter regions (1 kb around TSS). TRs with >20%
peaks on promoter regions are defined as promoter-type
TRs and use 1k as the half-decay distance. Other TRs are
defined as enhancer-type TRs and use 10k as the half-decay
distance.

We compared the performance of the simple RP model
and enhanced RP model, which use different half-decay dis-
tances for different types of TRs (1k for promoter-type TRs,
and 10k for enhancer-type TRs). We applied different RP
models to identify the targets for 140 TRs from the PBMC
scATAC-seq dataset. To evaluate the performance, we cal-
culated the expression correlation between TR and its top
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500 targets using matched PBMC scRNA-seq and used the
number of true targets (abs correlation ≥ 0.3 and P-value ≤
0.01) as the evaluation metric. We first compared the perfor-
mance of using different regulatory ranges. 1k group repre-
sents the half-decay for all TRs were set as 1k, similar for
the 10k group. For the auto group, the half-decay is deter-
mined by the percentage of the TR peaks on promoter re-
gions. Clearly, the auto half-decay strategy shows an over-
all higher number of true targets compared to 1k and 10k
strategies (Supplementary Figure S5a). We also compared
the performance of the simple versus enhanced RP model.
Interestingly, the simple RP model seem to have slightly
better performance than the enhancer RP model consider-
ing all TRs (Supplementary Figure S5b). However, for fac-
tors like IRF8 and CEBPA, the enhanced RP model shows
better performance, while TBX20 and EBF1 have a differ-
ent trend. Besides, the two models share a great number
of target genes for the same factor (Supplementary Fig-
ure S5c, d). These results suggest that the simple and en-
hanced models do not show a significant difference in iden-
tifying target genes. We set the simple RP model and auto
half-decay distance as the default parameter for SCRIP, but
also provided the enhanced model for users to choose from.
With the RP score, we can rank the target genes for each
TR, and obtain the top-ranked target genes to build the
gene regulatory network.

DATA PROCESSING ON DIFFERENT SCATAC-SEQ
DATASETS

PBMC multiome dataset

Preprocessing and TRs activity. The PBMC multiome
data was downloaded on the 10X genomics website
(https://www.10xgenomics.com/resources/datasets/pbmc-
from-a-healthy-donor-granulocytes-removed-through-
cell-sorting-10-k-1-standard-2-0-0). The peaks were called
using Cell Ranger ATAC 2.0 by fitting the peak signals
using a Zero-Inflated Negative Binomial model, combining
scATAC-seq reads as a bulk sample. In the scRNA-seq
data, cells with <200 genes and genes with less than three
cells were removed. We only retained the cells with both
RNA-seq counts and ATAC-seq counts. We clustered the
scRNA-seq data with the Louvain clustering algorithm
and annotated the cell type by cell markers (Supplemen-
tary Figure S6a, c, d). Then, we transferred the cell type
labels to scATAC-seq data by the matched cell barcodes
(Supplementary Figure S6b, e). We applied the SCRIP to
the filtered scATAC-seq peak count matrix with the default
parameters to evaluate the activity of TRs. The activity
scores of different TRs were used to draw heatmap with
clustermap of seaborn and project to UMAP with scanpy
(Figure 2A, Supplementary Figure S7).

Clustering performance comparison. We compared the
clustering performance between TR-based tools (SCRIP,
chromVAR), peak-based tools (SCALE, Signac, CisTopic),
and bin-based tools (ArchR and SnapATAC) in the PBMC
dataset. The scATAC-seq data was preprocessed into TR-
cell, peak-cell, or bin-cell matrix to meet the requirements of
each tool. All tools were applied to scATAC-seq data with
their default parameters. In addition, we use the chromVAR

motifs as the motif reference in the process of chromVAR.
The Louvain algorithm in Seurat or scanpy was used to per-
form clustering with the tools. Normalized mutual informa-
tion score (NMI) and Adjusted rand index (ARI) were cal-
culated with the python package sklearn (Figure 2B).

TR activity and expression correlation. SCRIP TR activ-
ity score and chromVAR z-score were used to calculate the
Spearman correlation coefficients (SCC) with gene expres-
sion. Only the 468 TRs that appear in SCRIP, chromVAR,
and gene expression were used to calculate the correlation
(Figure 2C, Supplementary Figure S8). We also separated
the positive and negative correlations and compared them
individually. We defined the TRs with SCC > 0.3 with their
expression, and the P-value <0.01 as high-confidence posi-
tive regulators, and with SCC <–0.3 and the P-value <0.01
as high-confidence negative regulators. We count the num-
ber of high-confidence regulators for both positive and neg-
ative regulators between SCRIP and chromVAR, respec-
tively.

Datasets selection evaluation. We evaluated SCRIP’s abil-
ity for identifying the best-matched dataset using POLR2A,
a TR that has the most abundant ChIP-seq references (Sup-
plementary Figure S1c, d, >150 high-quality datasets). We
count the number of identified TR datasets for each cell type
and the number of cells for specific TR datasets (Supple-
mentary Figure S9). Considering that not all of the single-
cells, especially for the rare population such as mast cells,
could find TR datasets with matched cell types. We did fur-
ther analyses to compare the performance of using cell-
type-matched strategy, average strategy (average the score
for the same TR), and maximum strategy (highest score
within the same TR, current model in SCRIP). Only 340
TRs were used for the cell-type-matched strategy due to
the relatively low cell type coverage of many TRs. Finally,
we checked the TR enrichment distributions of several cell-
type-specific TRs using different strategies (Supplementary
Figure S3).

H3K27ac targets determination

To capture the loci of rare population cell types, we con-
vert the 10X scATAC-seq data and scCUT&Tag-pro data to
the bin-cell matrix with 500 bp. We applied the SCRIP im-
pute function to the scATAC-seq data with HM reference
to impute the loci of H3K27ac modifications. The genome
track was built by merging the same cell type and normaliz-
ing by min-max normalization (Figure 3B, Supplementary
Figure S10). With the imputed H3K27ac bin-count matrix,
we applied the SCRIP target function to calculate the RP
score of each gene and determine the key affected genes with
the H3K27ac modification. We applied the same algorithm
to calculate the RP score of the scCUT&Tag-pro dataset
and the original scATAC-seq dataset. We merged the T cells
and monocytes with the maximum RP score, which reflects
the driven peaks in the cell type. Also, a bulk T cell and a
monocyte dataset’s RP score were obtained from Cistrome
DB. Then, we calculated the Spearman correlation with the
scCUT&Tag-pro dataset and showed the overlap of target
genes between the top 1000 RP score targets of each dataset
(Figure 3C).
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Figure 1. Workflow of SCRIP. Schematic of SCRIP workflow. SCRIP takes the feature count matrix of scATAC-seq as input. The TR ChIP-seq and
motif reference datasets were built based on Cistrome ChIP-seq data and Cis-BP motifs, with careful curation. For the enrichment module, the overlaps of
scATAC-seq and reference datasets are firstly counted using GIGGLE and further normalized. Then the scores for the same TR were merged and only kept
the score of the best-matched dataset for every TR in every cell. Finally, the TR scores were scaled and output. For the Target Module, the best-matched
ChIP-seq peaks are combined with scATAC-seq peaks to determine the target gene using the RP model. SCRIP outputs the TR activity, differential targets
between cell types, and GRNs at the single-cell level.

HSC dataset

Preprocessing. The HSC scATAC-seq peak count matrix
was obtained from the GEO (GSE96769). LiftOver (35)
was used to convert genome build from hg19 to hg38. The
HSC peaks were generated by MACS2 (36) using bulk
hematopoietic data from the same study. We annotated the
cell type with the labels from the original study. To evaluate
the activity of TRs in each cell, we applied the SCRIP enrich
function to the peak count matrix with the default parame-
ters. We performed the unsupervised clustering with the TR
activity score and calculated the NMI and ARI with the cell
type annotations (Supplementary Figure S11e, Supplemen-
tary Table S1). The TRs’ activity score matrix was used to
do the following analysis.

Trajectory analysis. We applied the R packages destiny
(37) to perform the trajectory analysis of HSC. To meet the
requirement of data distribution of the destiny, we did an
extra normalization step that centralized the activity score
at the TR level after the deduplication. The top 600 most

variable TRs were used to reconstruct the differential path.
The k was set to 4 for the k-nearest neighbor (KNN) al-
gorithm in destiny. The tip was set to 1 to calculate the
diffusion pseudo time (DPT). The first two diffusion com-
ponents were used to draw the diffusion map. We evalu-
ate performances of trajectory between SCRIP, chromVAR,
and peak count with the relative distance between starting
cell types (HSC) and terminal cell types (monocytes, MEP,
CLP and pDC). The start position was indicated using the
HSC’s average coordinates. We carry out the 0–1 normaliza-
tion for the four terminal cell types using the start position
and every terminal cell type cell. The cell type position was
then determined by averaging the coordinates of its cells.
Between the start position and cell type position, the Eu-
clidean distance was determined. We projected the HOXA9,
GATA1, CEBPB, TCF4 and other TRs activity scores to
the diffusion map to show the TRs activity on each branch
(Figure 4B, D, Supplementary Figure S11f–j). To visualize
the dynamic changes in the TRs’ activity in the differential
lineages, we showed the TR’s activity score with the cell’s
DPT (Supplementary Figure S11k–z).
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Triangle plot. The activity score of each TR of each cell
type was calculated by averaging the TR’s activity of all cells
in the same cell type. The quantile of the TR in each cell type
among all cell types was used to suggest TR’s preference for
each cell type. The TRs’ activity on different lineages were
represented by the TR activity score of the terminally differ-
entiated cell type. For example, we used the CLP (common
lymphoid progenitor) to represent the lymphoid branch, the
monocytes to represent the myeloid branch, and the MEP
(megakaryocyte-erythroid progenitor) to represent the ery-
throid branch. We displayed the positions of TRs on each
branch with the ggtern package (Figure 4C).

Human fetal organ datasets

Preprocessing and Clustering. The different human or-
gans scATAC-seq datasets were obtained from the GEO
(GSE149683), which provided the filtered peak count ma-
trix and cell labels with the Seurat object format. The peaks
of each sample were called using MACS2 by combining
scATAC-seq reads as a bulk sample, then the peaks from

different samples/organs were merged to generate a union
peak set. LiftOver was used to convert genome build from
hg19 to hg38. We applied the SCRIP enrich function to the
provided scATAC-seq peak count matrix with the default
parameters. Then, we used the most variable TRs in each
organ and clustered them with R packages ggtree and Com-
plexHeatmap (Figure 5B–D, Supplementary Figure S12a–
c, Supplementary Table S2). We performed the unsuper-
vised clustering with the TR activity score and calculated
the NMI with the cell type annotations (Figure 5A, Sup-
plementary Table S1).

Target analysis

We applied the SCRIP impute and target functions with de-
fault parameters to determine the GATA3 target genes in
the lung, the MYOD1 target genes in the intestine, and the
GATA4 and EPAS1 target genes in the liver. To build the
credible GRN of the four TRs, we retained the 500 cells with
the highest RP in each cell type. The GRNs were built by
the R package ggraph. To know the functions of TR’s tar-
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Figure 4. SCRIP reconstructs the path of differentiation of HSCs based on the TR activity. (A) Schematic of HSC differentiation. (B) Diffusion map of
HSC with the cell-type annotations. MPP: multipotent progenitor; LMPP: lymphomyeloid-primed progenitor; CMP: common myeloid progenitor; GMP:
granulocyte-macrophage progenitors; UNK: unknown (original study annotation). (C) Triangle plot of TRs that regulate HSC differentiation towards
three main lineages. (D) Projecting HOXA9, GATA1, CEBPB and TCF4 activity onto the diffusion map.

gets, we selected the top 1000 target genes according to the
RP score to do the gene ontology (GO) enrichment analy-
sis with the R packages ClusterProfiler (38) (Figure 5E-H,
Supplementary Table S3).

BCC tumor microenvironment Datasets

Preprocessing. The scATAC-seq dataset of tumor cells
and T cells in BCC was obtained from GEO (GSE129785).
Cells were first clustered using a 2.5 kb bin-based method,
then the cells from each cluster (cell type) were merged as
a pseudo bulk and the peaks were called using MACS2.
LiftOver was used to convert genome build from hg19 to
hg38. We applied the SCRIP enrich function to the provided
scATAC-seq peak count matrix with the default parame-
ters. The averages of TR activity in each cell type were used

to plot the heatmap (Figure 6A). The pseudo-time analy-
sis was conducted by the custom scripts from the original
study of this dataset. The UMAPs and violin plots of gene
expression were obtained from the TISCH database (39).

Target analysis. We applied the SCRIP impute and target
functions with default parameters to determine the BATF
target genes in terminal TEx cells and the IRF4 target
genes in CD4 Tfh cells (Supplementary Figure S13a, b). The
JUNB target analysis was done on both naı̈ve CD8 T cells
and terminal TEx cells (Figure 6F, G, Supplementary Ta-
ble S3). Genes with low RP scores, which are considered to
have few peaks of this TR, were removed. We normalized
RP with the natural logarithm and scaled it for each cell.
The FindMarkers function in the R package Seurat was ap-
plied to identify the differential target genes of naı̈ve CD8
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T cells and terminal TEx cells according to the normalized
RP score. Different target genes were obtained by 0.25 log
fold change and 0.01 P-value (Supplementary Figure S13d).
The ClusterProfiler was used for GO analysis of these target
genes. The GRNs were built using the R package ggraph.

RESULTS

Workflow of the SCRIP

The SCRIP workflow takes the peak count or bin count ma-
trix of scATAC-seq data as input and outputs the TR activ-
ity score and their target genes in each cell (Figure 1). We
first built a comprehensive reference dataset to help evaluate
the TR enrichment in the cells from scATAC-seq data (Sup-
plementary Figures S1 and S2). The reference dataset in-
cludes two components. The first one is a TR ChIP-seq ref-
erence based on a large collection of 20k ChIP-seq datasets
from the Cistrome Data Collection (11k human TRs and
9k mouse TRs) (16,26). We have carefully curated metadata
such as factor information, tissue types, and cell types (Sup-
plementary Figure S1a, b). Then we filtered out the ChIP-
seq datasets of bad quality and removed low confidence
peaks from retained datasets to generate high confidence
TR peak sets covering 671 human TRs and 440 mouse TRs
(Supplementary Figure S1c, d). Considering there are also
TRs without ChIP-seq datasets, we also scanned motifs on
the whole genome and obtained the refined intervals with
high confidence. These two references were combined to
generate the TR reference database containing 1,252 human
TRs and 997 mouse TRs in different tissues (Supplementary
Figure S1e, f).

Next, we evaluated the TR enrichment in each cell by
modeling the peak overlaps between scATAC-seq peaks and
TR reference. While scATAC-seq peaks are usually sparse
and noisy, we first implemented an imputation step using
nearest neighbor cells. Then, we calculated the intersections
of each TR dataset or motifs in every single cell. This score
was further normalized by the number of reference peaks
and length of scATAC-seq peaks in each cell. For each TR,
there may be ChIP-seq datasets from different tissues or cell
lines, we deduplicate the TR score matrix and keep the TRs
with the largest score as the best-matched tissues or dataset
for this cell. This generated a normalized TR activity score-
by-cell matrix and can be further used to perform cluster-
ing, lineage tracing, and other downstream analyses (Sup-
plementary Figures S3 and S4). After identifying the best-
matched ChIP-seq dataset for a TR, we can combine the
ChIP-seq peaks with scATAC-seq peaks, and apply the reg-
ulatory potential (RP) model (10,23,25) to quantitatively
evaluate the TR enrichment on its target genes for each
cell (Supplementary Figure S5). The RP scores reflect the
TR regulation ability of its target genes and can be used
to construct single-cell GRNs for that TR. Overall, SCRIP
will output the TR activity, candidate TR targets, and TR
GRNs at single-cell resolution.

TR activity performance evaluation using PBMC multiome
dataset

To systematically evaluate the performance of SCRIP, we
applied it to a peripheral blood mononuclear cell (PBMC)

dataset that was produced using the 10X Genomics Mul-
tiome platform, which generates scRNA-seq and scATAC-
seq in the same cell. We annotated the dataset with cell-type
markers from the scRNA-seq dataset and transferred the
cell-type labels to the scATAC-seq dataset (Supplementary
Figure S6a–e). SCRIP successfully finds the key TRs in the
corresponding cell types, for example, CEBPA and CEBPB
are enriched in monocytes, and PAX5 and BCL6 are en-
riched in B cells (Figure 2A, Supplementary Figure S7).
Also, the cells can be well clustered to their cell type lineages
using TR activity alone (Supplementary Figure S3). We
also compared the consistency of the clustering results with
scRNA-seq transferred labels and benchmarked them us-
ing normalized mutation information (NMI) and Adjusted
Rand index (ARI). Interestingly, clustering using SCRIP
TR activity scores shows better consistency with scRNA-
seq transferred cell-type compared to existing motif-based
methods such as chromVAR, and peak or bin-based meth-
ods such as SCALE (11), Signac (8), CisTopic (40), ArchR
(41) and SnapATAC (42) (Figure 2B, Supplementary Table
S1). This result suggests that SCRIP could accurately pre-
dict TR activity at the single-cell level, which should show
superior performance in determining cell-type lineages.

Next, we compared TR activity with its gene expression.
We compared the Spearman correlation coefficients (SCC)
distribution of TRs activity scores and its gene expression
for both SCRIP and chromVAR. Interestingly, SCRIP has
a larger dynamic range for both positive and negative corre-
lations (Figure 2C, S8a). The majority of chromVAR corre-
lations were around 0, indicating that the motif informa-
tion might not be able to capture real TR activity. Also,
SCRIP identifies more high-confidence TRs for both pos-
itive and negative regulators (Supplementary Figure S8b).
Compared to chromVAR, SCRIP also has generally higher
correlations with gene expression in individual cell types
(Supplementary Figure S8c–k). Also, SCRIP correctly es-
timated the activity of factors with similar motifs. For ex-
ample, previous studies have suggested that BCL11A is re-
quired for the generation of B progenitor cells (43), while
BCL11B activates the transcription of interleukin-2 dur-
ing T cell activation (44). These two factors share similar
motifs but are expressed in distinct lineages (Figure 2D,
Supplementary Figure S6c). Consistently, SCRIP predicts
BCL11A to be enriched in B-cells and myeloid lineages,
while BCL11B is enriched in T and NK-cells (Figure 2E,
F). On the contrary, the chromVAR score shows no signif-
icant difference between BCL11A and BCL11B, which is
biased by the similar motif sequences (Figure 2E, F). These
results suggest that SCRIP can identify tissue-specific reg-
ulations even for factors with similar motifs, which cannot
be achieved by motif-based methods.

Finally, we evaluated whether SCRIP can identify cell-
type-specific regulations for the same TR. Due to the rel-
ative sparsity of TR ChIP-seq datasets, there are slightly
more TRs that were only covered by motifs than ChIP-
seq (Supplementary Figure S3a). We next compared the
performance of TR ChIP-seq datasets and motif datasets
on the human PBMC dataset. For each TR, we calculated
the percentage of cells that selected the motif dataset as
the best-matched dataset. Interestingly, for the 335 shared
TRs, most of them tend to find ChIP-seq datasets than mo-
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tif datasets (Supplementary Figure S3b). These results sug-
gest although the motifs could serve as a complementary
reference to fulfill the TR reference, the ChIP-seq dataset
still carries more information than motif datasets for the
TRs with both ChIP and motif information. POLR2A is
the TR with the most abundant ChIP-seq data in various
tissue types (Supplementary Figure S1c, d). We tested the
ability of SCRIP to find the correct POLR2A ChIP-seq
dataset for different single cells. As we expected, for most
of the T cells, B cells, and monocytes in PBMC scATAC-seq
datasets, SCRIP could successfully identify the correspond-
ing TR ChIP-seq datasets (Supplementary Figure S9a–c).
If we focused on specific datasets, they were also assigned
to the cells with matched cell types (Supplementary Figure
S9d–f). These results suggest that SCRIP could accurately
find the TR datasets with matched cell type information
for each cell. In summary, our analyses suggest that SCRIP
could accurately predict TR activity at the single-cell level,
identify tissue-specific regulations, and find the correct TR
dataset for different single-cells.

TR targets evaluation using PBMC scCUT&Tag-pro
datasets

The main purpose of ChIP-seq experiments is to find tar-
get genes for TR, which is crucial for constructing GRNs.
As SCRIP can correctly match the TR ChIP-seq dataset
for single cells from different lineages, we asked whether
integrating bulk ChIP-seq data and single-cell accessibil-
ity could impute the ChIP-seq signals and further identify
TR targets at the single-cell level. We thus predicted the
TR peaks of each cell with the best match bulk ChIP-seq
dataset and applied a modified RP model to infer the pu-
tative targets of TR on each cell (Figure 3A, see Materi-
als and Methods). Several single-cell ChIP-seq profiles are
available for HMs and a few TRs using scCUT&Tag (20,22)
and scCUT&Tag-pro. While the TR scCUT&Tag data is of
low quality, we benchmarked our method using several pub-
lished HM scCUT&Tag-pro datasets (21).

H3K27ac modification is an active enhancer marker that
has been profiled using scCUT&Tag-pro in PBMC (21). We
built a reference dataset with active histone modifications
including H3K27ac and imputed the H3K27ac signal us-
ing the PBMC scATAC-seq dataset (Supplementary Fig-
ure S2). While the scATAC-seq cells and scCUT&Tag-pro
cells are not from the same populations, we cannot com-
pare the performance at the single-cell level. However, when
we piled up the H3K27ac scCUT&Tag-pro signal and the
SCRIP imputed signal for different cell types, we found that
SCRIP could accurately identify the T-cell-specific peaks
around STAT4, a TF that plays an important role in T cells
(Figure 3B). Many regions with only scATAC-seq peaks
were removed from SCRIP. The CRAMP1 and FAM22A
loci show both scATAC-seq signals for monocytes and
T cells. However, these two loci do not have H3K27ac
signals from the bulk data and they are not output by
SCRIP, which were also not observed in the scCUT&Tag-
pro data. For the locus of SCL24A42, SCRIP could accu-
rately predict the T-cell-specific H3K27ac signal based on
the combination of bulk H3K27ac signal and scATAC-seq

peak (Supplementary Figure S10). Besides, when we cal-
culated correlations between the real scCUT&Tag-pro RP,
SCRIP imputed RP, scATAC-seq RP, and bulk H3K27ac
RP, the SCRIP imputed RP shows the highest consistency
with the scCUT&Tag-pro RP, indicating its better ability
and accuracy in identifying H3K27ac regulated genes (Fig-
ure 3C). More specifically, when comparing the top 1000
H3K27ac regulated genes in T-cells and monocytes, SCRIP
imputed RP could identify more common target genes in
scCUT&Tag-pro data than using bulk H3K27ac data di-
rectly (Figure 3D). These results collectively suggest that in-
tegrating scATAC-seq data with bulk TR or HM ChIP-seq
data could accurately identify their target genes.

SCRIP underlies differentiation paths for human HSC dif-
ferentiation

TRs are often the driving source of cellular differentiation.
To prove that SCRIP can infer TR activity in a complex sys-
tem and could be potentially used to track cell differentia-
tion, we applied SCRIP on a human hematopoietic stem cell
(HSC) differentiation scATAC-seq dataset (45). The HSC
differentiation is a well-characterized system, with HSCs
differentiating into three different major lineages (Figure
4A). SCRIP also achieved the second-best result in all
methods and shows the best performance in the TR-based
method in the clustering performance (Supplementary Fig-
ure S11e). After identifying TR activity in different HSC
subpopulations, we performed a pseudo-time analysis and
reconstructed the differentiation trajectory of HSC using
TR activity (Figure 4B and Supplementary Figure S11a–c,
e). The diffusion map of SCRIP suggests that HSC was dif-
ferentiated into three major directions, CLP (common lym-
phoid progenitor), monocytes, and MEP (megakaryocyte-
erythroid progenitor), with a little spike towards pDC (plas-
macytoid dendritic cells) (Figure 4B). These directions are
perfectly aligned with the known differentiation path of
HSCs. By contrast, the diffusion map generated using the
original peak count matrix showed a relatively vague sepa-
ration for different lineages (Supplementary Figure S11a).
In addition, we have calculated the averaged distance of
terminally differentiated cells (monocytes, MEP, CLP and
pDC) versus HSC, SCRIP showed the largest distance com-
pared to using peak-count matrix and chromVAR results,
indicating a better lineage separation result (Supplementary
Figure S11a–d).

Next, we sought to identify the driven TRs for the three
major differentiation lineages. We use the average TR activ-
ity of CLP, monocytes, and MEP to denote the lineage lym-
phoid, myeloid and erythroid respectively. Our results cor-
rectly distinguish and locate the key TRs into different lin-
eages (Figure 4C). For example, GATA1 and SPI1 are well-
known mutually inhibiting TFs acting as fate-determining
regulators in the hematopoietic system. GATA1 specifies
the erythroid lineages while SPI1 specifies the myeloid lin-
eage (46,47), which is highly consistent with the SCRIP re-
sults (Figure 4C). We also found other well-known regu-
lators show high activity in their corresponding lineages,
such as HOXA9 for HSCs, CEBPB for myeloid lineages,
and TCF4 for lymphoid lineages (Figure 4D, Supplemen-
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tary Figure S11f–i). Besides, the dynamic changes in the
TRs’ activity of the differential lineages indicate their po-
tential role in lineage differentiation (Supplementary Fig-
ure S11j–y). These results prove that SCRIP enables the
trajectory analyses of scATAC-seq with known driver TR
activity.

SCRIP constructs GRNs in human fetal organ development

To prove the ability that SCRIP can be applied to diverse
tissue types and infer the target genes of TRs, we applied
SCRIP to a scATAC-seq dataset of human fetal organs
that covers 14 different tissues (48). The TR activity score
showed a better performance in clustering compared to the
motif-based method chromVAR in almost all these tissues
(Figure 5A, Supplementary Table S1). To check whether
SCRIP could identify the TRs that are involved in the
production and maintenance of specific cell types in dif-
ferent organs, we focused on the lung, intestine, and liver
datasets. Again, SCRIP could correctly identify the cell-
type-specific TRs in these three different organs (Figure
5B–D, Supplementary Figure S12a–c, Supplementary Table
S2). For example, GRHL2 and its downstream direct tar-
get gene NKX2-1 form a positive feedback loop to connect
lung epithelial cell identity, migration, and lung morpho-
genesis (49) (Figure 5B, bronchiolar and alveolar epithelial
cells, BAEC). GATA6 regulates the development of primi-
tive intestinal cells (50) (Figure 5C, intestinal epithelial cells,
IEC). HNF1A, HNF4A and GATA4 are well-known hep-
atocyte TFs in liver tissues (51) (Figure 5D, hepatoblasts,
HB). These results proved that SCRIP can not only cluster
the same cell type with TRs activity but also identify cru-
cial TRs in different cell types using chromatin accessibility
data.

Master TRs and their cofactors regulate each other or
co-regulate downstream target genes, forming a potential
GRN that could modulate cell fate and identities. To val-
idate the ability of SCRIP to establish cell-type-specific
GRNs, we inferred the potential target genes of TRs and
built the cell-type-specific GRNs for different organs (Fig-
ure 5E–H, Supplementary Table S3). In the lung, we identi-
fied the target genes of GATA3, which is mainly enriched
in the lymphoid cells (LC) (Figure 5B). The target genes
of GATA3 mainly contribute to immune functions through
responding to interleukin-7 (IL-7) and negatively regulat-
ing the differentiation of myeloid cells, which is in line
with previous studies (52) (Figure 5E). In the intestine,
MYOD1 controls the differentiation of smooth muscle cells
(SMC) by regulating its downstream genes and function
(53) (Figure 5C, F). Finally, we built a co-regulatory GRN
of GATA4 and its downstream targets EPAS1 (54) in liver
hepatoblasts (HB) (Figure 5G). Although their downstream
target genes show a great difference (Supplementary Fig-
ure S12d, e), the GO analysis suggests that the functions
are both enriched in the biosynthetic process. In addition,
GATA4 tends to regulate alcohol metabolism, while EPAS1
targets are enriched in response to hypoxia (55,56) (Figure
5H). These results show that SCRIP allows identifying the
targets of different TRs in diverse cell types and construct-
ing GRNs of multiple TRs in the same cell.

Disease-specific GRNs identified by SCRIP in the tumor mi-
croenvironment

The target genes of TR can be changed due to different co-
operation of co-regulators, especially under disease status
(57). We applied SCRIP to a basal cell carcinoma (BCC)
tumor microenvironment (TME) dataset (58) to investigate
how TRs and their target genes were changed in differ-
ent cell states under disease status. First, we confirmed the
TRs activity is accurately predicted in the corresponding
cell types (Figure 6A). For instance, CEBPG, a TF that pro-
motes cancer development by enhancing the PI3K–Akt sig-
naling pathway (59), was found to be robustly more active
in tumor cells than in other cells. In addition, the activity of
TFs such as EOMES and TBX21 were higher in immune
cells than in tumor cells (Figure 6A), which is consistent
with the role of these TFs in driving lymphocyte differen-
tiation (60,61).

T cells are the major cytotoxic cells responsible for anti-
tumor immunity. Diverse T cell differentiation paths and
phenotypes drive the immune response in TME. We per-
formed the pseudo-time analysis of T cells in TME using
the TR activity from SCRIP, which uncovered two distinct
paths. The first differentiation path is from naı̈ve CD4 T
cells to T follicular helper (Tfh) cells, for which IRF4 is
gradually activated in Tfhs (Figure 6B). The IRF4 activity
was significantly increased in Tfh, and the function of its
target genes was also enriched in lymphocyte activation and
differentiation (Supplementary Figure S13a). These analy-
ses are consistent with the IRF4 function in Tfh cell expan-
sion (62). Another path is from naı̈ve CD8 T cells to termi-
nal T exhaustion (TEx) cells. BATF, a key regulator of T cell
exhaustion (63), has higher activity in terminal TEx (Fig-
ure 6C). Consistently, the BATF target genes tend to have
an immunosuppressive effect on terminal TEx cells (Sup-
plementary Figure S13b). These analyses suggest that the
TR activity and targets inferred by SCRIP could be used to
track cell state changes under the disease condition.

Interestingly, we found that the activity of JUNB is both
higher in naı̈ve CD8 T and terminal TEx (Supplementary
Figure S13c). We then checked the target genes of JUNB
between these two cell types. Although most targets were
shared, there are a considerable number of differential tar-
gets between these two stages (Figure 6D, E). We asked
whether JUNB has different functions in naı̈ve CD8 T cells
and terminal TEx cells, then we examined their differential
target genes and built cell-type-specific GRNs for JUNB
(Supplementary Figure S13d, Figure 6F, G, Supplementary
Figure S14). We found that PRMT5, which is critical for the
transition of naı̈ve T cells to the effector or memory pheno-
type (64), is presented in the JUNB GRNs only in naı̈ve
CD8 T cells (Figure 6E, F). In contrast, CTLA4, which
could encode a protein that transmits an inhibitory signal to
T cells and its upregulation has been described as a marker
of T cell exhaustion in chronic infections and cancer (65,66),
has a high RP score in JUNB GRNs in terminal TEx (Fig-
ure 6E, G). The function enrichment results suggest that
JUNB mainly tends to function as a positive regulator of T
cell activation and migration to lymphoid organs, while neg-
atively modulating the immune system process in terminal
TEx cells. In summary, our analyses suggest that SCRIP can
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identify cell-type-specific GRNs as well as uncover disease-
specific GRNs in complex biological systems.

DISCUSSION

In this study, we present SCRIP, a computational workflow
for single-cell gene regulation inference by large-scale data
integration. We first built a manually curated and compre-
hensive epigenome reference dataset including 11k human
and 9k mouse TR ChIP-seq datasets. Based on the refer-
ence, we developed a method that can evaluate TR activity
and build GRNs at the single-cell resolution using scATAC-
seq. Our method achieves better performance compared
to the previous motif-based methods in terms of cluster-
ing accuracy, consistency with gene expression, and abil-
ity to discriminate factors within the same family. We ap-
plied SCRIP to four different biological systems, including
PBMC, HSC differentiation, human fetal organ develop-
ment, and the BCC tumor microenvironment. SCRIP does
not merely identify the key TRs in different cell types un-
der diverse biological settings. In addition, the TR activ-
ity predicted by SCRIP could be used to trace the cell lin-
eages and identify lineage-specific regulators. The single-cell
GRNs constructed by SCRIP enable the identification of
the co-regulation relationship between different TRs and re-
veal the disease-associated GRNs in the terminal exhausted
T-cells from the tumor microenvironment.

Although in SCRIP, the ChIP-seq-based method outper-
forms motif-based methods in many aspects, there are still
several limitations. First, our method significantly relies on
the data quality of the ChIP-seq datasets. After filtering the
20k human and mouse datasets, there are only 4k ChIP-
seq datasets with good data quality. This significantly re-
duced the number of TRs as well as different types of tis-
sues covered by our reference. To compensate for this, we
also integrate the motif scanning results into the TR refer-
ence. Second, there might be potential batch effects between
the TR ChIP-seq data with the scATAC-seq data. To avoid
this, for each cell we score TR enrichment using multiple
TR ChIP-seq from different tissues, and only keep the one
with the highest TR enrichment score, which is usually from
the same cell type. This could partially solve the batch effect
for TRs with a large number of datasets, but may not be ap-
propriate for TRs with few numbers of matched datasets.
Third, the experiment of the public TR ChIP-seq may have
been performed with different perturbations, which may al-
ter the TR’s binding sites and introduce biases to our results.
Finally, the bulk-level ChIP-seq datasets have the probabil-
ity of losing the signals on rare populations, which also im-
pacts the results of binding sites and target genes for our
method, especially for some minority populations.

We foresee several ways to further improve our method.
First, there will be an increasing number of TR ChIP-seq,
CUT&RUN, and CUT&Tag datasets in the future. The
first version of Cistrome DB includes 13 366 human and
9953 mouse epigenome datasets, while the number almost
doubled to 25 000 human and 22 000 mouse epigenome
datasets after only 2 years (16,26). Large consortiums like
ENCODE, and Epigenome Roadmap will also generate a
great number of TR datasets with high quality. With the
development of scCUT&RUN and scCUT&Tag-pro, we

could also integrate the single-cell TR dataset into our ref-
erence for annotating TRs from scATAC-seq in other cell
types. These expanded references will improve the perfor-
mance of our method for predicting TR activity. Second,
machine learning algorithms, such as generative adversar-
ial networks (GAN) could be used to generate more TR
ChIP-seq datasets in silico. Finally, although we demon-
strated that SCRIP is powerful in predicting TR activity
and GRNs for scATAC-seq, we could potentially extend
its applications to scRNA-seq. The Cistrome DB also has
a decent collection of public ATAC-seq and DNase-seq
datasets, which could be used to infer the chromatin ac-
cessibility for scRNA-seq, then infer the TR activity us-
ing the predicted accessibilities. In addition, gene expression
correlation could be considered to increase the accuracy
of constructing single-cell GRNs. With the implementation
of those features, we anticipate SCRIP to help researchers
identify driver TRs and interpret single-cell GRNs in dif-
ferent biological areas.

DATA AVAILABILITY

PBMC multiome dataset is available on the 10X ge-
nomic website (https://www.10xgenomics.com/resources/
datasets/pbmc-from-a-healthy-donor-granulocytes-
removed-through-cell-sorting-10-k-1-standard-2-0-0).
scCUT&Tag-pro H3K27ac dataset was obtained from
their original studies: https://zenodo.org/record/5504061.
Other datasets analyzed during the current study are
available in the GEO with the following accession: HSC
(GSE96769), human fetal organ (GSE149683), BCC tumor
microenvironment (GSE129785). SCRIP is an open-source
python package with source code freely available at: https:
//github.com/wanglabtongji/SCRIP. The analysis codes
and reference processing codes in this paper are available
at https://github.com/wanglabtongji/SCRIP notebook.
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